Iterated elliptic and hypergeometric integrals for Feynman diagrams
نویسندگان
چکیده
منابع مشابه
Iterated Elliptic and Hypergeometric Integrals for Feynman Diagrams
We calculate 3-loop master integrals for heavy quark correlators and the 3-loop QCD corrections to the ρ-parameter. They obey non-factorizing differential equations of second order with more than three singularities, which cannot be factorized in Mellin-N space either. The solution of the homogeneous equations is possible in terms of convergent close integer power series as 2F1 Gauß hypergeomet...
متن کاملRecurrences for elliptic hypergeometric integrals
In recent work on multivariate elliptic hypergeometric integrals, the author generalized a conjectural integral formula of van Diejen and Spiridonov to a ten parameter integral provably invariant under an action of the Weyl group E7. In the present note, we consider the action of the affine Weyl group, or more precisely, the recurrences satisfied by special cases of the integral. These are of t...
متن کاملNested (inverse) binomial sums and new iterated integrals for massive Feynman diagrams
Nested sums containing binomial coefficients occur in the computation of massive operator matrix elements. Their associated iterated integrals lead to alphabets including radicals, for which we determined a suitable basis. We discuss algorithms for converting between sum and integral representations, mainly relying on the Mellin transform. To aid the conversion we worked out dedicated rewrite r...
متن کاملLimits of elliptic hypergeometric integrals
In [16], the author proved a number of multivariate elliptic hypergeometric integrals. The purpose of the present note is to explore more carefully the various limiting cases (hyperbolic, trigonometric, rational, and classical) that exist. In particular, we show (using some new estimates of generalized gamma functions) that the hyperbolic integrals (previously treated as purely formal limits) a...
متن کاملTransformations of hypergeometric elliptic integrals
The paper classifies algebraic transformations of Gauss hypergeometric functions with the local exponent differences (1/2, 1/4, 1/4), (1/2, 1/3, 1/6) and (1/3, 1/3, 1/3). These form a special class of algebraic transformations of Gauss hypergeometric functions, of arbitrary high degree. The Gauss hypergeometric functions can be identified as elliptic integrals on the genus 1 curves y = x − x or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Physics
سال: 2018
ISSN: 0022-2488,1089-7658
DOI: 10.1063/1.4986417